Печатная машина - определение. Что такое Печатная машина
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Печатная машина - определение

Типографский станок; Печатный станок
  • Heidelberg]] Speedmaster CD 102-5''
Найдено результатов: 370
ПЕЧАТНАЯ МАШИНА         
в полиграфии - служит для печатания книг, газет, журналов, упаковочной продукции и т. п. с печатных форм; основной вид полиграфического оборудования. Имеет печатный и красочный аппараты, устройства для подачи бумаги и вывода готовой продукции и другие механизмы. Различают тигельные, плоскопечатные и ротационные печатные машины.
Печатная машина         

полиграфическая, служит для печатания (См. Печатание) книг, брошюр, газет, журналов, этикеток, плакатов и т.п., а также упаковочной продукции. Кроме полиграфических, имеются П. м. для печати на жести, упаковочном картоне, стекле, пластмассе, текстиле и т.д., а также для оперативного размножения информации и служебной документации.

Основные узлы П. м.: печатный аппарат для переноса краски с формы на бумагу; красочный аппарат, наносящий краску на форму; бумагопроводящая система, подающая бумагу к печатному аппарату и выводящая оттиски из машины; дополнительные устройства для приёмки и обработки отпечатанной продукции; привод и системы управления машиной. По принципу построения печатного аппарата различают 3 вида П. м. (): ротационные, плоскопечатные и тигельные.

Ротационные П. м. - наиболее производительное печатное оборудование. В машинах этого типа форма закрепляется на цилиндрической поверхности (формном цилиндре), бумага также располагается на цилиндрической поверхности (печатном цилиндре). Переход краски с формы на бумагу происходит в зоне контакта формного и печатного (покрытого эластичной оболочкой - декелем) цилиндров под давлением. По виду подаваемого материала (листы или лента, намотанная в рулон) П. м. подразделяют на листовые и рулонные.

Листовые ротационные машины в основном предназначены для печатания высококачественной многокрасочной продукции и изготавливаются для всех основных способов печатания: высокого, офсетного и глубокого (см. Высокая печать, Офсетная печать, Глубокая печать). В СССР на листовых ротационных машинах высокой печати ПВЛ-70 и ПВЛ-84 (рис. 2, а) печатают продукцию на листах форматом соответственно до 70x100 см и 84x108 см при скорости до 7500 листов в 1 ч. Для раскатывания краски и нанесения её на форму равномерным слоем в красочном аппарате предусмотрено большое число резиновых валиков и металлических цилиндров, которые перемещаются в осевом направлении. После нанесения на бумагу первой краски листы передаются ко второй печатной секции, на которой на оттиск наносится вторая краска. После этого листы выводятся на стапель приёмки. В зависимости от числа печатных секций машины выпускаются одно-, двух- и четырёхкрасочные. Кроме машин секционного построения, существуют П. м. с планетарным печатным аппаратом, в которых с одним печатным цилиндром контактирует несколько формных. В качестве печатных форм в листовых ротационных машинах высокой печати используются Стереотипы или гальваностереотипы, а также полноформатные гибкие формы толщиной 0,8 мм из фотополимеров, каучука или микроцинка (машины ПГФ). Наибольшее распространение получили листовые машины для офсетной печати. Листовые офсетные машины ПОЛ-70 и ПОЛ-84 (рис. 2, б) построены на одной конструктивной базе с машинами ПВЛ. Формный цилиндр, рассчитанный на установку полноформатных форм толщиной 0,8 мм, помимо красочного аппарата, оснащается увлажняющим аппаратом, наносящим тонкий слой раствора на пробельные элементы формы. С формным цилиндром контактирует офсетный цилиндр, покрытый упругим прорезиненным полотном, на поверхность которого переходит с формы слой краски. В зоне контакта с печатным цилиндром слой краски переходит на поверхность бумажного листа. В офсетных машинах часто применяется планетарный пятицилиндровый печатный аппарат, в котором с одним печатным цилиндром контактируют два офсетных. По такому принципу построен печатный аппарат двухкрасочной листовой офсетной машины ПОЛ-6, печатающей на бумажных листах форматом до 920 Х 1200 мм (рис. 3). В четырёхкрасочной машине ПОЛ-7 (рис. 4) две пятицилиндровые двухкрасочные секции соединены цепным транспортёром, передающим листы от первой секции ко второй. Листовые машины для глубокой печати имеют ограниченное распространение.

Рулонные ротационные П. м. выпускаются для высокой, офсетной и глубокой печати. По назначению рулонные машины подразделяются на газетные и книжно-журнальные. В СССР выпускаются 3 модели газетных машин высокой печати: агрегат ГАУ (ширина бумажного полотна 1680 мм, длина окружности цилиндров 1188 мм, максимальная скорость 30 тыс. об/ч), предназначенный для печати центральных и респектабельных крупнотиражных газет (рис. 5); ПВГ-84 (ширина рулона 840 и 420 мм, длина окружности цилиндров 1188 мм, максимальная скорость 25 тыс. об/ч) - для печати областных и городских газет средними тиражами; ПВГ-60 (ширина рулона 600 мм, длина окружности цилиндров 840 мм, максимальная скорость 18 тыс. об/ч) - для печати районных газет. Книжно-журнальные рулонные машины имеют декель толщиной 1,5-2,0 мм, в то время как у газетных машин 4-4,5 мм. Иллюстрационные книжно-журнальные машины оснащаются сушильными установками, в которых ускоряется закрепление краски. Иллюстрационная книжно-журнальная ротация ПВК-84 предназначена для печати двухкрасочной продукции форматом 840 Х 1100 мм (максимальная скорость 13500 об/ч).

Всё большее распространение получают рулонные машины для офсетной печати, которые применяются, в первую очередь, для многокрасочной двусторонней книжно-журнальной продукции. В таких машинах обычно имеется четырёхцилиндровый печатный аппарат; бумажное полотно проходит между двумя эластичными офсетными цилиндрами, которые наносят изображение одновременно с П. м. ПОК-84 (рис. 6) применяются две двухлучевые рулонные звезды, которые могут располагаться на одном этаже с печатной машиной или в нижнем этаже. В СССР выпускается рулонная офсетная машина ПОК-70 с односторонним трёхцилиндровым печатным аппаратом; формат оттиска 700 Х 920 мм, максимальная скорость 18 тыс. об/ч. Готовятся к выпуску (1975) двухсторонние машины с четырёхцилиндровым печатным аппаратом ПОК-84 двух размеров: для форматов оттиска 546x840 мм и 840x1092 мм, максимальная скорость соответственно 30 и 25 тыс. об/ч. Рулонные офсетные машины применяются и для печати иллюстрированных газет.

Плоскопечатные П. м. предназначены для печати только способом высокой печати, скорость их работы ниже, чем листовых ротационных, но они позволяют печатать непосредственно с плоских первичных наборных форм или клише; эффективны при печатании небольших тиражей. В плоскопечатных машинах форма закрепляется на плоском столе - талере, совершающем возвратно-поступательное движение, а бумага - на вращающемся цилиндре. Плоскопечатные машины подразделяются двухоборотные, в которых цилиндр совершает два оборота за цикл, однооборотные, стоп-цилиндровые (с останавливающимся цилиндром) и реверсивные. В СССР выпускаются следующие плоскопечатные машины: двухоборотные ПД-З (формат 840 Х 1080 мм, максимальная скорость 3120 циклов в мин), 2ПД-5 (700 Х 1000 мм максимальная скорость 3000 циклов в ч); однооборотные ПС-АЗ (450 Х 600 мм, максимальная скорость 4500 циклов в ч; рис. 7), стоп-цилиндровые ПС-1М (450 Х 600 мм, максимальная скорость 2100 циклов в ч).

Тигельные П. м. применяются для печатания малотиражной продукции небольшого формата; они позволяют печатать только с плоских форм высокой печати. Форма и бумага располагаются на плоских поверхностях - талере и тигле. Тигельные машины бывают лёгкого и тяжёлого типов. Машины лёгкого типа предназначены для печати простой текстовой продукции. В этих машинах тигель совершает простое качательное движение. В СССР выпускаются тигельные машины лёгкого типа: ПТ-4 с ручным накладом (формат бумаги 300 Х 450 мм, максимальная скорость 1500 циклов в ч) и ПТ-2 с автоматическим накладом бумаги (формат 300 Х Х420 мм, максимальная скорость 3600 циклов в ч). В машинах тяжёлого типа тигель совершает сложное движение: при удалении от талера он откидывается для укладывания на его поверхность листов бумаги, а при подходе к форме он движется прямолинейно и прижимает бумагу к форме одновременно всей плоскостью. Машины этого типа предназначены для печатания иллюстрационной продукции и тиснения.

Зарубежные П. м. представлены в основном офсетными, в первую очередь двух сторон. В рулонных офсетных рулонными и листовыми крупноформатными. Скорости зарубежных П. м.: газетных агрегатов до 40-42 тыс. об/ч; книжно-журнальных до 30 тыс. об/ч, листовых ротаций до 10-12 тыс. об/ч.

Развитие печатного оборудования происходит в направлении преимущественного развития рулонных ротационных машин, создания многокрасочных машин, изготавливающих продукцию за один цикл; увеличения форматов бумаги, повышения скорости работы машин; сокращения непроизводительных простоев путем механизации и автоматизации подготовительных и вспомогательных операций. См.

Лит.: Бушунов В. Т., Печатные машины, М.- Л., 1963; Куликов Б. В., Типографские ротационные печатные машины, М., 1965; Тюрин А. А., Печатные машины, М., 1966; Захаров А. Г., Фуфаевский Д. А., Офсетные машины и работа на них, М., 1972.

Н. И. Либерман.

Рис. 4. Четырёхкрасочная листовая офсетная машина ПОЛ-7: 1 - самонаклад; 2 - первая двухкрасочная секция; 3 - вторая двухкрасочная секция; 4 - приёмное устройство.

Рис. 1. Схемы построения печатных аппаратов: a - ротационный; б - плоскопечатный; в - тигельный; 1 - печатная форма; 2 - накатные валики красочного аппарата; 3 - печатный цилиндр; 4 - формный цилиндр; 5 - талер; 6 - тигель; 7 - бумага.

Рис. 2. Схемы двухкрасочных листовых ротационных машин: а - высокой печати; б - офсетной печати; 1 - самонаклад; 2 - накладной стол; 3 - качающиеся захваты; 4 - передаточный цилиндр; 5 - печатный цилиндр; 6 - формный цилиндр; 7 - красочный аппарат; 8 - листопередающий транспортёр; 9 - вторая печатная секция; 10 - выводной транспортёр; 11 - стапель приёмки бумажных листов; 12 - стапель самонаклада; 13 - увлажняющий аппарат; 14 - офсетный цилиндр.

Рис. 3. Схема двухкрасочной листовой офсетной машины ПОЛ-6: 1 - стапель самонаклада; 2 - самонаклад; 3 - накладной стол; 4 - качающиеся захваты; 5 - передаточный цилиндр; 6 - офсетные цилиндры; 7 - увлажняющие аппараты; 8 - формные цилиндры; 9 - печатный цилиндр; 10 - стапель приёмки.

Рис. 5. Схема секции газетного агрегата ГАУ: 1 - рулон бумаги; 2 - рулонная звезда; 3 - красочный аппарат основной краски; 4 - формный цилиндр основной краски; 5 - печатный цилиндр; 6 - формный цилиндр второй краски; 7 - красочный аппарат второй краски; 8 - воронка; 9 - фальцаппарат.

Рис. 6. Схема многокрасочной рулонной офсетной машины: 1 - рулон бумаги; 2 - рулонная звезда; 3 - стабилизатор натяжения; 4 - формные цилиндры; 5 - офсетные цилиндры; 6 - сушильные установки; 7 - фальцаппарат.

Рис. 7. Схема плоскопечатной машины ПС-АЗ: 1 - самонаклад; 2 - накладной стол; 3 - печатный цилиндр; 4 - красочный аппарат; 5 - талер; 6 - выводной транспортёр; 7 - стапель приёмки.

Печатная машина         
Печатная машина — полиграфическое оборудование, предназначенное для нанесения изображений на различные материалы. Используется для производства разнообразной печатной продукции, в том числе знаков почтовой оплаты (почтовых марок и т. п.).
Тигельная печатная машина         
  • Heidelberg]] Windmill

Печатная машина, в которой печатный аппарат образуют 2 плиты. На одной плите (талере) закрепляется форма, а др. плита (тигель) служит для прижимания к форме листа бумаги. Т. п. м. составляют сравнительно небольшую группу малоформатных листовых однокрасочных машин высокой печати (См. Высокая печать) и предназначены для выпуска малотиражной продукции.

КОМПАУНД-МАШИНА         
  • Машина с тройным расширением пара
(от англ. compound - составной), двухцилиндровая паровая машина двойного действия с параллельным расположением цилиндров; пар, отработав в одном цилиндре, поступает в другой (большего диаметра).
Компаунд-машина         
  • Машина с тройным расширением пара

двухцилиндровая Паровая машина двойного действия, в которой пар расширяется в цилиндре меньшего диаметра, а затем переходит в цилиндр большего диаметра (цилиндры расположены параллельно).

Тигельная машина         
  • Heidelberg]] Windmill
Тигельная печатная машина — листовая машина высокой печати. В тигельных машинах на вертикально размещенной плите, талере, крепится печатная форма.
Вычислительная машина         
  • Счётная машина «Resulta BS 7».
  • «Считающие часы» Вильгельма Шиккарда.
Вычисли́тельная маши́на, счётная маши́на — механизм, электромеханическое или электронное устройство, предназначенное для автоматического выполнения математических операций. В последнее время это понятие чаще всего ассоциируется с различными видами компьютерных систем.
Машина Атвуда         
  • <center>Машина Атвуда
  • 200px
ЛАБОРАТОРНОЕ УСТРОЙСТВО ДЛЯ ИЗУЧЕНИЯ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ С ПОСТОЯННЫМ УСКОРЕНИЕМ
Атвудова машина
Машина Атвуда — лабораторное устройство для изучения поступательного движения с постоянным ускорением. Была изобретена в 1784 году английским физиком и математиком Джорджем Атвудом.
Вычислительная машина         
  • Счётная машина «Resulta BS 7».
  • «Считающие часы» Вильгельма Шиккарда.

устройство или совокупность устройств, предназначенных для механизации и автоматизации процесса обработки информации (вычислений).

Современные В. м. по способу представления информации подразделяются на 3 класса: а) аналоговые вычислительные машины (См. Аналоговая вычислительная машина) (АВМ), в которых информация представлена в виде непрерывно изменяющихся переменных, выраженных физическими величинами (угол поворота вала, сила электрического тока, напряжение и т.д.); б) цифровые вычислительные машины (См. Цифровая вычислительная машина) (ЦВМ), в которых информация представлена в виде дискретных значений переменных (чисел), выраженных комбинацией дискретных значений какой-либо физической величины; в) гибридные вычислительные системы (См. Гибридная вычислительная система), в различных узлах которых информация представлена тем или другим способом.

Исторически первыми появились цифровые вычислительные устройства, например счёты и их многочисленные предшественники (см. Вычислительная техника). В 17 в. французским учёным Б. Паскалем, а позднее немецким математиком Г. В. Лейбницем были построены первые ЦВМ. Первой пригодной для практического применения В. м. стал Арифмометр Томаса де Кольмара (1820). В 1874 был создан получивший широкое распространение арифмометр В. Т. Однера. В начале 20 в. появились Счётно-аналитические машины для выполнения различных статистических, бухгалтерских и финансово-банковских операций.

Идея создания универсальной ЦВМ принадлежит профессору Кембриджского университета Ч. Беббиджу. Он разработал проект (1833) В. м., по своему устройству близкой к современной. Проект опережал запросы времени и технические возможности реализации.

Развитие теории релейно-контактных схем, а также опыт эксплуатации телефонной аппаратуры и счётно-перфорационных машин (См. Счётно-перфорационные машины) позволили в 30-х гг. 20 в. приступить к разработке В. м. с программным управлением первоначально на электромагнитных реле. Первая такая машина "МАРК-1" была построена в США в 1944. Первая электронная ЦВМ "ЭНИАК" (электронный цифровой интегратор и вычислитель) была построена также в США в 1946.

В Советском Союзе электронная ЦВМ "МЭСМ" (малая электронная счётная машина) была разработана в 1950 под руководством академика С. А. Лебедева в АН УССР. "МЭСМ" положила начало работам в области математического электронного машиностроения в СССР. В последующие годы в СССР создан ряд различных по производительности и техническому решению ЦВМ для удовлетворения нужд народного хозяйства (БЭСМ, "Стрела", М-20, М-220, "Минск", "Урал", "Мир" и др.).

Первые устройства непрерывного действия появились в 16-17 вв. К ним относятся Логарифмическая линейка и номограммы для расчётов, связанных с навигацией. В середине 19 в. появились простейшие механические интеграторы. Значительное развитие работы по АВМ получили на рубеже 19 и 20 вв. Были разработаны машины для решения дифференциальных уравнений, электромеханическая интегрирующая машина и др. В СССР начало разработки АВМ относится к 1927 и связано с работами С. А. Гершгорина, М. В. Кирпичёва, И. С. Брука, В. С. Лукьянова и др. В 50-60-х гг. было создано несколько типов АВМ, многие из которых нашли широкое применение.

Развитие электронных В. м. (ЭВМ) тесно связано с достижениями в области электронной техники. Первые ЭВМ создавались на вакуумных радиоприборах; эти В. м. принято называть машинами первого поколения. Развитие полупроводниковой радиоэлектроники позволило перейти к конструированию В. м. второго и третьего поколения; для них характерно усложнение логической схемы и наличие программного обеспечения, являющегося программным продолжением аппаратной части В. м. Технология изготовления В. м. второго поколения мало отличалась от технологии изготовления В. м. первого поколения: на смену вакуумным радиолампам пришли полупроводниковые триоды (транзисторы) и диоды. В. м. третьего поколения выполняются на интегральных схемах (См. Интегральная схема), содержащих в одном модуле десятки транзисторов, резисторов и диодов. Переход к производству В. м. на интегральных схемах потребовал почти полного пересмотра технологии производства ЭВМ.

Основой для построения аналоговых вычислительных машин является теория математического моделирования (См. Моделирование). Используя аналогии между различными по физической природе явлениями, в АВМ моделируют рассчитываемые процессы. Большую часть оборудования АВМ составляют линейные и нелинейные решающие элементы. В электронных АВМ - это операционные усилители постоянного тока (интегратор, усилитель, инвертор), блоки коэффициентов, типичных нелинейностей, запаздывания и т.д. Для решения конкретной задачи блоки АВМ соединяют между собой в необходимых комбинациях. Выходные данные на АВМ получают по показаниям индикаторов в узловых точках схемы. АВМ характеризуется высоким быстродействием, простотой сопряжения с исследуемым объектом, возможностью лёгкого изменения параметров исследуемой задачи как при её подготовке, так и в процессе решения, сравнительно невысокой точностью и ограниченностью класса решаемых задач.

Решение задачи на цифровых вычислительных машинах заключается в последовательном выполнении арифметических операций над числами, соответствующими величинам, представляющим исходные данные. Числа представляются обычно в виде совокупности механических, пневматических или электрических импульсов и фиксируются элементами, каждый из которых может принимать ряд устойчивых состояний, строго соответствующих определённой цифре числа. Перед решением на ЦВМ задача расчленяется на ряд последовательных простых операций и устанавливается их очерёдность, т. е. составляется Программа вычислений.

По способу управления цифровые В. м. подразделяются на 3 класса: с ручным управлением, с жёсткой программой и универсальные. К ЦВМ с ручным управлением относятся настольные клавишные вычислительные машины (См. Клавишная вычислительная машина), арифмометры, рычажные В. м. и др. Современные настольные ЦВМ изготовляются почти полностью на электронных элементах, Управление вычислительным процессом осуществляется вручную, что определяет низкую скорость вычислений. ЦВМ с ручным управлением являются средством механизации расчётных работ и пригодны для решения лишь простейших задач с ограниченным объёмом вычислений.

ЦВМ с жёсткой программой. К ним относятся табуляторы, специализированные машины, ориентированные на решение узкого круга задач, например бортовые вычислители и т.п. В этих В. м. управление вычислительным процессом осуществляется автоматически программой, набираемой на коммутационной доске или постоянно заложенной в конструкцию машины. ЦВМ с коммутируемой программой являются средством частичной автоматизации вычислительного процесса и быстро вытесняются универсальными ЦВМ. В. м. с программой, заложенной в конструкции, применяются в тех случаях, когда нужны простота, надёжность, низкая стоимость, малые габариты и масса, главным образом в условиях разового действия (например, на ракетах).

Универсальные ЦВМ с автоматическим программным управлением - наиболее совершенное средство автоматизации трудоёмких процессов умственной деятельности человека. Современная универсальная ЦВМ представляет собой сложный автоматизированный вычислительный комплекс, в состав которого входят Процессор, оперативное запоминающее устройство, одно или несколько внешних запоминающих устройств большой ёмкости, устройства ввода - вывода информации и др. Управление вычислительным процессом осуществляется устройством управления и программой вычислений, размещаемой в памяти ЭВМ. Загрузка отдельных устройств, координация их работы, управление последовательностью решения задач осуществляются программными средствами. Комплекс программ, выполняющих эти и ряд других функций, называется математическим обеспечением (См. Математическое обеспечение). Для описания решения задачи используются алгоритмические языки алгол, фортран, кобол и др. (см. Язык программирования). Ввод исходных данных, программ и вывод результатов в виде, наиболее удобном для потребителя, осуществляются комплексом устройств ввода - вывода, входящих в состав универсальной ЦВМ (см. Ввод данных, Вывод данных). Исходные данные могут задаваться в виде графиков, цифровой и текстовой документации, изображения рассчитываемого объекта (например, общий вид здания, профиль крыла самолёта и т.д.), светозвуковой индикации и пр.

ЦВМ характеризуются высокой производительностью, точностью получаемых результатов и алгоритмической универсальностью, обусловленной тем, что перестройка ЦВМ на решение новой задачи состоит лишь в замене программы вычислений и исходных данных, хранящихся в памяти В. м., без изменения конструкции самой машины.

Гибридные вычислительные системы состоят из органически связанных между собой АВМ и ЦВМ. Обмен информацией между В. м. непрерывного и дискретного действия осуществляется через специальные преобразователи. Для комбинированной системы типично разделение функций между машинами: АВМ используется для воспроизведения быстро протекающих процессов с ограниченными точностями переменных величин, а ЦВМ - для вычислений с более высокой точностью и для статистической обработки результатов. В гибридной вычислительной системе сочетаются высокая точность и быстродействие, которые сложнее получать с помощью только одной из В. м.

А. Н. Мямлин.

Википедия

Печатная машина

Печатная машина — полиграфическое оборудование, предназначенное для нанесения изображений на различные материалы. Используется для производства разнообразной печатной продукции, в том числе знаков почтовой оплаты (почтовых марок и т. п.).

Что такое ПЕЧАТНАЯ МАШИНА - определение